SOLUTION: if a^2+b^2=c^2 than prove that (a+b+c)(b+c-a)(c+a-b)(a+b-c)=4a^2b^2

Algebra.Com
Question 789866: if a^2+b^2=c^2 than prove that (a+b+c)(b+c-a)(c+a-b)(a+b-c)=4a^2b^2
Answer by Edwin McCravy(20063)   (Show Source): You can put this solution on YOUR website!
           (a+b+c)(b+c-a)(c+a-b)(a+b-c) ≟ 4a²b²

Write the last factor second:

           (a+b+c)(a+b-c)(b+c-a)(c+a-b) ≟ 4a²b²

Rearrange and regroup each factor:

(a+b+c) = [b+c+a] = [(b+c)+a]
(a+b-c) = [a-c+b] = [a+b-c] = [a+(b-c)]
(b+c-a) = [b+c-a] = [(b+c)-a] 
(c+a-b) = [a-b+c] = [a-(b-c)]


           (a+b+c)(a+b-c)(b+c-a)(c+a-b) ≟ 4a²b²

      [(a+b)+c][(a+b)-c][b-a+c][-b+a+c] ≟ 4a²b²

  [(a+b)+c][(a+b)-c][(b-a)+c][-(b-a)+c] ≟ 4a²b²

                [(a+b)²-c²][-(b-a)²+c²] ≟ 4a²b²

      [(a²+2ab+b²)-c²][-(b²-2ba+a²)+c²] ≟ 4a²b²

          [a²+2ab+b²-c²][-b²+2ba-a²+c²] ≟ 4a²b²

Substitute a²+b² for c²

[a²+2ab+b²-(a²+b²)][-b²+2ba-a²+(a²+b²)] ≟ 4a²b²

    [a²+2ab+b²-a²-b²][-b²+2ba-a²+a²+b²] ≟ 4a²b²

           [b²+2bc+c²-a²][a²-b²+2bc-c²] ≟ 4a²b²

Substitute a²+b² for each c²

 [b²+2bc+(a²+b²)-a²][a²-b²+2bc-(a²+b²)] ≟ 4a²b²

     [b²+2bc+a²+b²-a²][a²-b²+2bc-a²-b²] ≟ 4a²b²

                             [2ab][2ba] ≟ 4a²b²

                                  4a²b² ≡ 4a²b²

Edwin


RELATED QUESTIONS

Simplify -15-6c+3b-6c+9-2b, b-4c+3a-c-9b-4a,... (answered by checkley77)
If a+b = c prove by direct substitution that a^4 + b ^4+ c^4-2b^2c^2-2c^2a^2-2a^2b^2 =... (answered by funmath)
prove that... (answered by Fombitz)
If x=a-b and y=b-c, show that (a-c)(a+c-2b) =... (answered by rothauserc)
if a/b = b/c prove that (a+b+c)(a-b+c) =(a^2 + b^2 + c^2) [ hints : let a/b = b/c = k... (answered by anand429)
If a,b,c are in AP then prove that a^2(b+c),b^2(c+a),c^2(a+b) are in... (answered by Edwin McCravy)
if log(a+b+c)=loga+logb+logc then prove that log(2a/1-a^2 + 2b/1-b^2 + 2c/1-c^2)= log... (answered by robertb)
if a,b,c,d are in continued proportion, prove that... (answered by Edwin McCravy)
If (a+b)^2 + (b+c)^2 + (c+d)^2 = 4(ab+bc+cd), prove... (answered by mananth)