Hi, there-- Set up your 3x4 augmented matrix using the coefficients and constants from the three equations. 1, -2, -3, -5 2, 1, 1, 9 1, 3, -2, 2 (NOTE: The interface with algebra.com is not that good at drawing matrices. I typed the rows in comma-separated formate.) You want to perform a series of row operations to translate this matrix to reduced row echelon form (rref) if possible. Add -2*Row1 to Row2: 1, -2, -3, -5 0, 5, 7, 19 1, 2, -2, 2 Add -1*Row1 to Row3: 1, -2, -3, -5 0, 5, 7, 19 0, 5, 1, 7 Multiply (1/5)*Row2. 1, -2, -3, -5 0, 1, 7/5, 19/5 0, 5, 1, 7 Add 2*Row2 to Row 1 1, 0, -1/5, 13/5 0, 1, 7/5, 19/5 0, 5, 1, 7 Add -5*Row2 to Row3. 1, 0, -1/5, 13/5 0, 1, 7/5, 19/5 0, 0, -6, -12 Multiply (-1/6)*Row3. 1, 0, -1/5, 13/5 0, 1, 7/4, 19/5 0, 0, 1, 2 Add 1/5*Row3 to Row1. 1, 0, 0, 3 0, 1, 7/5, 19/5 0, 0, 1, 2 Add -7/5*Row3 to Row2. 1, 0, 0, 3 0, 1, 0, 1 0, 0, 1, 2 The matrix is now in rref. (x, y, z = 3, 1, 2) ~Mrs. Figgy