The inverse of
x + 2y + 5z = 2 [ 1 2 5] is [ 2 -1 -1]
2x + 3y + 8z = 3 [ 2 3 8] is [12 -7 -2]
-x + y + 2z = 3 [-1 1 2] is [-5 3 1]
A X = B
[ 1 2 5][x] [2]
[ 2 3 8][y] = [3]
[-1 1 2][z] [3]
Left multiply both sides by A-1
A-1 A X = A-1 B
[ 2 -1 -1][ 1 2 5][x] [ 2 -1 -1][2]
[12 -7 -2][ 2 3 8][y] = [12 -7 -2][3]
[-5 3 1][-1 1 2][z] [-5 3 1][3]
I X = A-1B
[ 1 0 0][x] [-2]
[ 0 1 0][y] = [-3]
[ 0 0 1][z] [ 2]
X = A-1B
[x] [-2]
[y] = [-3]
[z] [ 2]
Therefore x=-2, y=-3, z=2
Edwin