write an equation for the linear function f satisfying the given conditions 1. f(3)=4 and f(0)=9 Use the slope formula: f(x2) - f(x1) m = ——————————————— x2 - x1 where x1 = 3 and x2 = 0 (9) - (4) 5 5 m = ——————————— = ———— = - ——— (0) - (3) -3 3 Now substitute in the point slope formula: f(x) - f(x1) = m(x - x1) 5 f(x) - f(3) = - ———(x - 3) 3 5 f(x) - 4 = - ———(x - 3) 3 Distribute to remove the parentheses: 5 f(x) - 4 = - ———x + 5 3 Add 4 to both sides: 5 f(x) = - ———x + 9 3 2. f(2)=7 and f(8)=1 Use the slope formula: f(x2) - f(x1) m = ——————————————— x2 - x1 where x1 = 2 and x2 = 8 (1) - (7) -6 m = ——————————— = ———— = -1 (8) - (2) 6 Now substitute in the point slope formula: f(x) - f(x1) = m(x - x1) f(x) - f(2) = -1(x - 2) f(x) - 7 = -1(x - 2) Distribute to remove the parentheses: f(x) - 7 = -x + 2 Add 7 to both sides: f(x) = -x + 9 Edwin