Graph the solution of each compound inequality on a number line. The solution given before this is incomplete because you are supposed to combine them on ONE number line: y - 2 < 4 AND y + 4 > 7 Solve the first one: | Solve the second one: | y - 2 < 4 | y + 4 > 7 y < 6 | y > 3 So the simplified version is: y < 6 AND y > 3 ################################################ Draw three number lines, like this: -------------------------------- -2 -1 0 1 2 3 4 5 6 7 8 -------------------------------- -2 -1 0 1 2 3 4 5 6 7 8 -------------------------------- -2 -1 0 1 2 3 4 5 6 7 8 ################################################ Mark the numbers 3 and 6 on all three number lines: ----------------o--------o------ -2 -1 0 1 2 3 4 5 6 7 8 ----------------o--------o------ -2 -1 0 1 2 3 4 5 6 7 8 ----------------o--------o------ -2 -1 0 1 2 3 4 5 6 7 8 ################################################ Label the first number line " y < 6 " Label the second number line " y > 3 " Label the third number line " y < 6 AND y > 3 " y < 6 ----------------o--------o------ -2 -1 0 1 2 3 4 5 6 7 8 y > 3 ----------------o--------o------ -2 -1 0 1 2 3 4 5 6 7 8 y < 6 AND y > 3 ----------------o--------o------ -2 -1 0 1 2 3 4 5 6 7 8 ################################################ Since the first one is y < 6, shade the part left of 6 y < 6 <=========================o------ -2 -1 0 1 2 3 4 5 6 7 8 y > 3 ----------------o--------o------ -2 -1 0 1 2 3 4 5 6 7 8 y < 6 AND y > 3 ----------------o--------o------ -2 -1 0 1 2 3 4 5 6 7 8 ################################################ Since the second one is y > 3, shade the part right of 3: y < 6 <=========================o------ -2 -1 0 1 2 3 4 5 6 7 8 y > 3 ----------------o===============> -2 -1 0 1 2 3 4 5 6 7 8 y < 6 AND y > 3 ----------------o--------o------ -2 -1 0 1 2 3 4 5 6 7 8 ################################################ Now to shade the last number line, we will shade only the part where both the first number line is shaded AND the second one is shaded. Only the part between 3 and 6 is shaded in both the first number line AND the second. So we just shade that part on the third number line: y < 6 <=========================o------ -2 -1 0 1 2 3 4 5 6 7 8 y > 3 ----------------o===============> -2 -1 0 1 2 3 4 5 6 7 8 y < 6 AND y > 3 ----------------o========o------ -2 -1 0 1 2 3 4 5 6 7 8 That last number line is the final answer. Sometimes teachers and books tell you to put parentheses if the end point is included and brackets if it's not included. Neither of these endpoints is included, so the final answer in that case would be like this: y < 6 AND y > 3 ----------------(========)------ -2 -1 0 1 2 3 4 5 6 7 8 Incidentally y > 3 can be rewritten as 3 < y and so 3 < y AND y < 6 can be written all together as 3 < y < 6 Edwin