SOLUTION: Please tell me how I would graph this. The question is:
Graph the solution set of the following system of inequalities:
x^2+y^2 less than or equal to 25
y greater than or equal
Algebra.Com
Question 499019: Please tell me how I would graph this. The question is:
Graph the solution set of the following system of inequalities:
x^2+y^2 less than or equal to 25
y greater than or equal to |x|
Found 2 solutions by chessace, Theo:
Answer by chessace(471) (Show Source): You can put this solution on YOUR website!
The first one results in the inside (and boundary) of a circle with center at (0,0) and radius = 5.
The 2nd one eliminates everything with negative y and everything below the lines y=x (to the right or NorthEast) and y=-x (to the left or NorthWest).
So the final graph will be the border and interior of a "piece of pie", a right angle at the point (0,0), "crust" at the top.
(> rotated 90 degrees clockwise.
Answer by Theo(13342) (Show Source): You can put this solution on YOUR website!
to graph them, you make the inequality an equality and then you solve for y.
y >= |x| becomes y = |x|.
you can graph it as such.
x^2 + y^2 <= 25 becomes x^2 + y^2 = 25
subtract x^2 from both sides of the equation to get y^2 = 25 - x^2
take the square root of both sides of the equation to get y = +/- sqrt(25 - x^2)
you can graph it as such.
the equations you are graphing are:
y = |x|
y = +/- sqrt(25-x^2)
your graph will look like this:

now you have to go back to the inequality and figure out which part of this graph is what you want.
we'll start with y >= |x|
if x is positive, then this is equivalent to y >= x.
if x is negative, then this is equivalent to y >= -x.
regardless of whether x is positive or negative, y will always be positive.
in both cases the value of y will be on the line of the graph or above it.
next we'll work on x^2 + y^2 <= 25
we subtract x^2 from both sides of the equation to get:
y^2 <= 25 - x^2
we take the square root of both sides of this equation to get:
y <= sqrt(25 - x^2) and y >= -sqrt(25 - x^2)
this may be a little hard to see, but it has to be this way in order for y^2 to be smaller than or equal to 25 - x^2.
in our example, we are only concerned with y <= sqrt(x) because we are restricted to positive values of y since y has to be >= |x|.
the shaded area in the graph shows you the area of the graph that is compatible with the requirements of the problem.
y >= |x| puts y above the graph of that equation.
y <= sqrt(25 - x^2) puts y within the boundaries of the circle.
RELATED QUESTIONS
HI,
How would I graph the solution set of the following system of linear inequalities... (answered by KMST)
Graph the solution set of the following inequalities. x >... (answered by Jesusrocks327,rmromero)
How would I graph the following system of inequalities?
y≥-1
x≥5... (answered by mananth)
The directions tell me to Graph the solution set of the give system of inequalities here... (answered by stanbon)
How do you graph the solution set of the following system of linear inequalities in a... (answered by Edwin McCravy)
How would I graph the solution set of the system of inequalities or indicate that the... (answered by KMST)
How would I graph the system of inequalities y<2x-1
(answered by KMST)
Good day tutors. I would really appreciate your help on this question.
Create a graph of (answered by ikleyn,MathLover1)
Graph the solution set of the following system of inequalities. y>3x+9 and y<-x-6
(answered by Fombitz)