SOLUTION: (x-1)^2 + (y-8)^2 = 16
I've tried giving x a value and solving for y. Here is what I tried...
(1-1)^2 + (y-8)^2 = 16
0 + (y-8)^2 = 16
(y-8)(y-8) = 16
y^2 -8y -8y =64 = 16
y^2
Algebra.Com
Question 72487: (x-1)^2 + (y-8)^2 = 16
I've tried giving x a value and solving for y. Here is what I tried...
(1-1)^2 + (y-8)^2 = 16
0 + (y-8)^2 = 16
(y-8)(y-8) = 16
y^2 -8y -8y =64 = 16
y^2 - 16y + 64 = 16
y^2 - 8(y-y+8) = 16
y^2 + 8 =2
y^2 = 16
y = 4
Answer by bucky(2189) (Show Source): You can put this solution on YOUR website!
.
Here's a point to the right direction. Look in your textbook for the standard form of the
equation of a circle.
.
The above problem is a circle whose center is found by getting its x and y values through solving
the two equations x-1 = 0 and y - 8 = 0.
.
The radius of the circle is the square root of the right side.
.
In summary, the graph of this equation is a circle whose center is located located at (1,8) and
whose radius is 4.
.
Hope this points you in a little better direction. If you study how the equation for
a circle is derived you will get a little better idea of how the above form comes about.
.
And don't feel too badly about this. The only reason I saw the answer immediately
was because the equation was written in a form that I recognized from a long time ago.
RELATED QUESTIONS
find the center, vertices, foci and asymptotes of the hyperbola 1x^2-y^2-8x+2y-1=0 and... (answered by lwsshak3)
The instructions were to graph this equation and create a table. This is the solution I... (answered by Abbey)
If (a^2 a^3)^x = a^125 and (a^y)^y = a^16/25 where x > 1 and y > 0, what is the product (answered by Fombitz)
{{{x^4+y^4=2}}}
and
{{{x^8+y^8=3}}}
then:
{{{x^16+y^16=8&1/2}}}
how does it do... (answered by Edwin McCravy)
what is the value of the range of the function f(x)= xsquared+2 for the domain value... (answered by ewatrrr)
{{{ 16(y-3)^2+1=8(y-3)... (answered by robertb)
Last graph problem today. This time, my lines run on top of each other.
Solve by... (answered by rchill)
one number is eight more than a second number. Four times the first is 8 less than 5... (answered by Maths68)
Give sin(a) =8/9,
pi/2< a < pi,
Find the exact value of sin(a/2)
I tried solving it... (answered by jim_thompson5910)