SOLUTION: Write the function whose graph of y=x^3, but is vertically stretched by a factor of 4.

Algebra ->  Graphs -> SOLUTION: Write the function whose graph of y=x^3, but is vertically stretched by a factor of 4.      Log On


   



Question 673760: Write the function whose graph of y=x^3, but is vertically stretched by a factor of 4.
Answer by MathLover1(20849) About Me  (Show Source):
You can put this solution on YOUR website!
Multiplying the x+-values or y+-values by a number changes the graph, usually by stretching or compressing it.
Vertical Stretch or Compress
a+f+%28x%29 stretches/compresses f+%28x%29 vertically
A vertical+stretching is the stretching OF the graph away} from the x-axis.
A vertical compression is the squeezing of the graph towards the x-axis.
If the original (parent) function is y+=+f+%28x%29, the vertical stretching or compressing of the function is the function a+f%28x%29.
if 0+%3C+a+%3C+1 (a fraction), the graph is compressed vertically by a factor of a units
if+a+%3E+1, the graph is stretched vertically by a factor of a units
so, in your case, function y=x%5E3, is stretched vertically by a factor of 4 (+a+%3E+1) when y=4%2Ax%5E3

+graph%28+600%2C+600%2C+-6%2C+5%2C+-10%2C+10%2C+x%5E3%2C+4x%5E3%29+