SOLUTION: Prove, tan^2x+2/1+tan^2x=1+cos^2x

Algebra.Com
Question 1025646: Prove, tan^2x+2/1+tan^2x=1+cos^2x
Answer by Alan3354(69443)   (Show Source): You can put this solution on YOUR website!
Prove,
tan^2x+2/1+tan^2x=1+cos^2x
(tan^2x+1)/(1+tan^2x) + 1/(1+tan^2) = 1+cos^2x
1 + 1/(1+tan^2) = 1+cos^2
1 + 1/sec^2 = 1 + cos^2
1 + cos^2 = 1 + cos^2

RELATED QUESTIONS

1-cos^2x/tan^2x=sqrt3/2 (answered by lwsshak3)
Prove that [ 1 + sin(2x)] / [ 1 + cos(2x)] = 1/2 (1+ tan(x))^2 (answered by math_helper)
Prove that [sin(2x) - cos(2x) +1] / [sin(2x) + cos(2x) -1] = tan (theta + pi/2)... (answered by ikleyn)
Please Prove the following identities 1.) Tan (x/2) = tan (x)/sec (x) + 1 2.)... (answered by lwsshak3)
tan... (answered by stanbon)
I need to prove the identity. (cos 2x) / (1 - tan^2 x) = cos^2... (answered by stanbon)
prove that... (answered by stanbon)
tan^2x/1+tan^2x (answered by Alan3354)
Prove that: {{{(tan^2(x)^""+1)cos(2x)}}}{{{""=""}}}{{{2-sec^2(x)}}} (answered by Edwin McCravy)