determine the range for:f(x)=9-8x-x² To do it graphically, draw the graph by plotting points.And you can see that the highest point is (-4,25) and so the values of y are never less than 25, so the range is (-oo, 25] Replace f(x) by y y = 9 - 8x - x² Solve for x x² + 8x + y - 9 = 0 x² + 8x + (y-9) = 0 Use the quadratic formula: ______ -b ± Öb²-4ac x = ————————————— 2a where a = 1; b = 8; c = (y-9) ______________ -(8) ± Ö(8)²-4(1)(y-9) x = ———————————————————————— 2(1) ________ -8 ± Ö64-4y+36 x = ————————————————— 2 ______ -8 ± Ö100-4y x = —————————————— 2 ______ -8 ± Ö4(25-y) x = —————————————— 2 ____ -8 ± 2Ö25-y x = —————————————— 2 ____ -8 2Ö25-y x = ———— ± —————————— 2 2 ____ x = -4 ± Ö25-y What's under the radical cannot be negative. Therefore 25-y > 0 -y > -25 y < 25 Or in interval notation (-oo, 25] Edwin