SOLUTION: The length of a rectangular playing field is 5 ft less than twice its width. If the perimeter of the playing field is 230 ft, find the length and width of the field.

Algebra.Com
Question 62998: The length of a rectangular playing field is 5 ft less than twice its width.
If the perimeter of the playing field is 230 ft, find the length and width of the field.

Answer by checkley71(8403)   (Show Source): You can put this solution on YOUR website!
2L+2W=P
L=2W-5
2(2W-5)+2W=230
4W-10+2W=230
6W=230+10
6W=240
W=240/6
W=40 SOLUTION
L=2*40-5
L=80-5
L=75 SOLUTION
PROOF
2*75+2*40=230
150+80=230
230=230

RELATED QUESTIONS

The length of a rectangular playing field is 5 ft less than twice its width. If the... (answered by elima)
The length of a rectangular playing field is 5 ft less than twice its width. If the... (answered by uknouluvme89)
Geometry. The length of a rectangular playing field is 5 ft less than twice its width.... (answered by anjulasahay)
The length of a rectangular playing field is 5 ft less than twice its width. If the... (answered by checkley71)
Geometry. The length of a rectangular playing field is 5 ft less than twice its width.... (answered by funmath)
The length of a rectangular playing field is 5 ft less than twice its width. If the... (answered by pvaka)
The length of a rectangular playing field is 5 ft less than twice its width. If the... (answered by chitra)
The length of a rectangular playing field is 5 ft less than twice its width. If the... (answered by uma)
The length of a rectangular playing field is 5 ft less than twice its width. If the... (answered by prabhjyot)