For the given function, find
f(x+h) - f(x)
覧覧覧覧覧覧
h
f(x) = xイ - 8x
===================================================
To find
f(x+h) - f(x)
覧覧覧覧覧覧
h
1. First find f(x+h)
f(x) = xイ - 8x
That is, replace every x by (x+h), and get
f(x+h) = (x+h)イ - 8(x+h)
Now simplify the right side:
f(x+h) = (x+h)(x+h) - 8x - 8h
f(x+h) = xイ + hx + hx + hイ - 8x - 8h
f(x+h) = xイ + 2hx + hイ - 8x - 8h
2. Now substitute xイ + 2hx + hイ - 8x - 8h for f(x+h) in
f(x+h) - f(x)
覧覧覧覧覧覧
h
and get
xイ + 2hx + hイ - 8x - 8h - f(x)
覧覧覧覧覧覧覧覧覧覧覧覧覧覧
h
3. Now substitute (xイ - 8x) for f(x) in that:
xイ + 2hx + hイ - 8x - 8h - (xイ - 8x)
覧覧覧覧覧覧覧覧覧覧覧覧覧覧覧覧覧
h
Remove the parentheses in the numerator:
xイ + 2hx + hイ - 8x - 8h - xイ + 8x
覧覧覧覧覧覧覧覧覧覧覧覧覧覧覧覧
h
Now the xイ and the -xイ cancel, and
the -8x and the +8x cancel, giving:
2hx + hイ - 8h
覧覧覧覧覧覧
h
4. Now factor out h in the numerator:
h(2x + h - 8)
覧覧覧覧覧覧
h
5. Now cancel the h factor in the numerator and
the denominator and get:
2x + h - 8
Now if you will swap the last two terms you will
get choice A).
A) 2x - 8 + h
Edwin