# SOLUTION: log378= 2.5775 ------------------- 5In(r) + 3In(t) - 4In(s) = lnr^5 + lnt^3 - lns^4 = ln[r^5*t^3/s^4] ---------------------------- In(x) +In(x-2) = In(x+2) + In(x-3)

Algebra ->  Algebra  -> Functions -> SOLUTION: log378= 2.5775 ------------------- 5In(r) + 3In(t) - 4In(s) = lnr^5 + lnt^3 - lns^4 = ln[r^5*t^3/s^4] ---------------------------- In(x) +In(x-2) = In(x+2) + In(x-3)       Log On

 Ad: Algebrator™ solves your algebra problems and provides step-by-step explanations! Ad: Algebra Solved!™: algebra software solves algebra homework problems with step-by-step help!

 Algebra: Functions, Domain, NOT graphing Solvers Lessons Answers archive Quiz In Depth

 Click here to see ALL problems on Functions Question 174251: log378= 2.5775 ------------------- 5In(r) + 3In(t) - 4In(s) = lnr^5 + lnt^3 - lns^4 = ln[r^5*t^3/s^4] ---------------------------- In(x) +In(x-2) = In(x+2) + In(x-3) g(x) = xto the 2nd power + 3 and h(x) = x+ 3 ______ 2 Find (h o g)(x)Answer by stanbon(57361)   (Show Source): You can put this solution on YOUR website!log378= 2.5775 ------------------- 5In(r) + 3In(t) - 4In(s) = lnr^5 + lnt^3 - lns^4 = ln[r^5*t^3/s^4] ---------------------------- In(x) +In(x-2) = In(x+2) + In(x-3) = ln[x(x-2)] = ln[(x+2)(x-3)] x(x-2) = (x+2)(x-3) x^2 - 2x = x^2 -x -6 x = 6 -------------------------------- g(x) = x^2+3 and h(x) = (x+ 3)/2 Find (h o g)(x) = h[x^2+3] = [(x^2+3)+3]/2 = [x^2+6]/2 =============================== Cheers, Stan H.