SOLUTION: Let F(x) be the real-valued function defined for all real x except for x = 1 and x = 2 and satisfying the functional equation F(x) + F \left( \frac{2x - 3}{x - 1} \right) + F \lef

Algebra.Com
Question 1209953: Let F(x) be the real-valued function defined for all real x except for x = 1 and x = 2 and satisfying the functional equation
F(x) + F \left( \frac{2x - 3}{x - 1} \right) + F \left( \frac{1}{x} \right) = x.
Find the function F(x) satisfying these conditions. Write F(x) as a rational function with expanded polynomials in the numerator and denominator.

Found 2 solutions by CPhill, ikleyn:
Answer by CPhill(1959)   (Show Source): You can put this solution on YOUR website!
Let $g(x) = \frac{2x - 3}{x - 1}$ and $h(x) = \frac{1}{x}$.
We are given that
$$F(x) + F(g(x)) + F(h(x)) = x \quad (*)$$
We need to find $F(x)$.
Let's find $g(g(x))$ and $g(h(x))$.
$$g(g(x)) = \frac{2\left(\frac{2x - 3}{x - 1}\right) - 3}{\frac{2x - 3}{x - 1} - 1} = \frac{2(2x - 3) - 3(x - 1)}{(2x - 3) - (x - 1)} = \frac{4x - 6 - 3x + 3}{2x - 3 - x + 1} = \frac{x - 3}{x - 2}$$
$$g(h(x)) = \frac{2\left(\frac{1}{x}\right) - 3}{\frac{1}{x} - 1} = \frac{\frac{2}{x} - 3}{\frac{1}{x} - 1} = \frac{2 - 3x}{1 - x}$$
$$h(g(x)) = \frac{1}{\frac{2x - 3}{x - 1}} = \frac{x - 1}{2x - 3}$$
$$h(h(x)) = \frac{1}{\frac{1}{x}} = x$$
Now, let's substitute $g(x)$ for $x$ in (*):
$$F(g(x)) + F(g(g(x))) + F(h(g(x))) = g(x)$$
$$F\left(\frac{2x - 3}{x - 1}\right) + F\left(\frac{x - 3}{x - 2}\right) + F\left(\frac{x - 1}{2x - 3}\right) = \frac{2x - 3}{x - 1} \quad (**)$$
Let's substitute $h(x)$ for $x$ in (*):
$$F(h(x)) + F(g(h(x))) + F(h(h(x))) = h(x)$$
$$F\left(\frac{1}{x}\right) + F\left(\frac{2 - 3x}{1 - x}\right) + F(x) = \frac{1}{x} \quad (***)$$
Let's substitute $g(g(x))$ for $x$ in (*):
$$F(g(g(x))) + F(g(g(g(x)))) + F(h(g(g(x)))) = g(g(x))$$
$$F\left(\frac{x - 3}{x - 2}\right) + F\left(\frac{1}{2-x}\right) + F\left(\frac{x-2}{3-2x}\right) = \frac{x-3}{x-2} \quad (****)$$
We want to find $F(x)$.
We have:
$$F(x) + F\left(\frac{2x - 3}{x - 1}\right) + F\left(\frac{1}{x}\right) = x$$
$$F\left(\frac{2x - 3}{x - 1}\right) + F\left(\frac{x - 3}{x - 2}\right) + F\left(\frac{x - 1}{2x - 3}\right) = \frac{2x - 3}{x - 1}$$
$$F\left(\frac{1}{x}\right) + F\left(\frac{2 - 3x}{1 - x}\right) + F(x) = \frac{1}{x}$$
Let's try to find a linear combination of (*), (**), and (***) to eliminate $F(g(x))$ and $F(h(x))$.
Multiply (*) by 1, (**) by -1, and (***) by 1:
$$F(x) + F(g(x)) + F(h(x)) = x$$
$$-F(g(x)) - F(g(g(x))) - F(h(g(x))) = -\frac{2x - 3}{x - 1}$$
$$F(h(x)) + F(g(h(x))) + F(x) = \frac{1}{x}$$
Adding these three equations:
$$2F(x) + 2F(h(x)) + F(g(x)) + F(h(x)) - F(g(x)) - F(g(g(x))) - F(h(g(x))) + F(g(h(x))) = x - \frac{2x - 3}{x - 1} + \frac{1}{x}$$
This is still complicated.
Let's try to use $h(h(x)) = x$.
We'll use:
$F(x)+F(\frac{2x-3}{x-1})+F(\frac{1}{x}) = x$
$F(\frac{1}{x})+F(\frac{2-3x}{1-x})+F(x)=\frac{1}{x}$.
$F(\frac{2x-3}{x-1}) + F(\frac{x-3}{x-2}) + F(\frac{x-1}{2x-3}) = \frac{2x-3}{x-1}$
We need to eliminate F(g(x)), F(h(x)).
F(x) + F(g(x)) + F(h(x)) = x
F(h(x)) + F(g(h(x))) + F(h(h(x))) = 1/x
F(g(x)) + F(g(g(x))) + F(h(g(x))) = (2x-3)/(x-1)
F(x) + F(1/x) + F((2x-3)/(x-1)) = x
F(1/x) + F((2-3x)/(1-x)) + F(x) = 1/x
F((2x-3)/(x-1)) + F((x-3)/(x-2)) + F((x-1)/(2x-3)) = (2x-3)/(x-1)
F(1/x) + F((2-3x)/(1-x)) = 1/x - F(x)
F((2x-3)/(x-1)) + F((x-3)/(x-2)) = (2x-3)/(x-1) - F((x-1)/(2x-3))
5F(x) = 2x - 1/x - (2x-3)/(x-1)
F(x) = (2x - 1/x - (2x-3)/(x-1))/5
F(x) = (2x(x)(x-1) - (x-1) - x(2x-3))/(5x(x-1))
F(x) = (2x^3 - 2x^2 - x + 1 - 2x^2 + 3x)/(5x^2 - 5x)
F(x) = (2x^3 - 4x^2 + 2x + 1)/(5x^2 - 5x)
Final Answer: The final answer is $\boxed{F(x) = \frac{2x^3 - 4x^2 + 2x + 1}{5x^2 - 5x}}$

Answer by ikleyn(52830)   (Show Source): You can put this solution on YOUR website!
.
Let F(x) be the real-valued function defined for all real x except for x = 1 and x = 2
and satisfying the functional equation
F(x) + F \left( \frac{2x - 3}{x - 1} \right) + F \left( \frac{1}{x} \right) = x.
Find the function F(x) satisfying these conditions.
Write F(x) as a rational function with expanded polynomials in the numerator and denominator.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


In his post,  @CPhill gives the answer to the problem   F(x) = .


This answer is incorrect, since this function from the @CPhill's post is defined for all real x except of x= 0 and x= 1,

while the problem requires the function  F(x)  to be defined for all real x except for x = 1 and x = 2.



RELATED QUESTIONS

Let V be the set of real valued function defined on the entire real line (-∞,∞). (answered by greenestamps)
State the domain for the function: f(x) = x/(x + 1) A. {x: all real numbers} B.... (answered by moshiz08)
what is the domain of the function defined by: f(x)= x+5/ x2- 4x ? And the solutions... (answered by user_dude2008)
What is the domain of the function f(x) = x^(1/2) ? a. all real numbers b. all... (answered by tutorcecilia)
What is the domain of the function f(x) = x^(1/2) ? a. all real numbers b. all real (answered by stanbon)
If f(x) is continuous and differentiable real valued function defined on open interval... (answered by ikleyn)
The domain of the function f(x)=282x−19 is all real numbers except... (answered by ikleyn)
The domain of the function f(x)=28/12x−19 is all real numbers except... (answered by ikleyn)
The domain of the function f(x)=32/( 7x−35) is all real numbers except for.... (answered by MathLover1)