SOLUTION: Let \[f(x) = \begin{cases} 9x+4 &\text{if }x\text{ is an integer}, \\ \lfloor{x}\rfloor+5 &\text{if }x\text{ is not an integer}. \end{cases} \]Find $f(\sqrt{29})$.

Algebra ->  Functions -> SOLUTION: Let \[f(x) = \begin{cases} 9x+4 &\text{if }x\text{ is an integer}, \\ \lfloor{x}\rfloor+5 &\text{if }x\text{ is not an integer}. \end{cases} \]Find $f(\sqrt{29})$.      Log On


   



Question 1045877: Let \[f(x) =
\begin{cases}
9x+4 &\text{if }x\text{ is an integer}, \\
\lfloor{x}\rfloor+5 &\text{if }x\text{ is not an integer}.
\end{cases}
\]Find $f(\sqrt{29})$.

Answer by solver91311(24713) About Me  (Show Source):
You can put this solution on YOUR website!


5 squared is 25 and 6 squared is 36, so the square root of 29 must be between 5 and 6. Hence, the Greatest Integer function of the square root of 29 must be 5.

John

My calculator said it, I believe it, that settles it