SOLUTION: At midnight the water at a particular beach is at high tide. At the same time a gauge at the end of a pier reads 10 feet. Low tide is reached at 6 AM when the gauge reads 4ft. 1

Algebra.Com
Question 891850: At midnight the water at a particular beach is at high tide. At the same time a gauge at the end of a pier reads 10 feet. Low tide is reached at 6 AM when the gauge reads 4ft.
1) Write the equation that models this situation.
2) Write the equation that models this situation.

thank you

Answer by josmiceli(19441)   (Show Source): You can put this solution on YOUR website!
Let = the height of the water in feet
Let = the time in hours
-----------------
You are given the point ( 12,10 ), which is midniight, 10 ft
and also the point ( 6, 4 ) which is 6 AM, 4 ft
Use the general point-slope formula




---------------
check:
If the time were 7AM,


OK, I think

RELATED QUESTIONS

12. The nearby beach has an average depth of the water at low tide of 1 m at midnight.... (answered by Theo,ikleyn)
Hello, I've had trouble solving this word problem..."At the ocean it is known that the... (answered by Alan3354)
High tide is at 6:00 AM. The water level at the pier at that time is 12 feet. At low... (answered by richwmiller)
In a particular harbour, high tide occurred at midnight. The depth of the water in a... (answered by Theo)
The water at a local beach has an average depth of one meter at low tide and an average... (answered by robertb)
Can somebody please help me out with this?? Coastal areas experience tides which is... (answered by Theo)
In Crescent Moon Bay in July, high tide is at 3:00 pm. The water level is 6 feet at high... (answered by josmiceli)
In Crescent Moon Bay in July, high tide is at 3:00 pm. The water level is 6 feet at high... (answered by ikleyn)