Not a rigorous proof but some insight perhaps...
Looking for a number of the form:
N = 37k + 18 (k is a positive integer)
Note this implies 37 divides (N-18) evenly
37*3 = 111 so it seems at least 3, but then to get the proper remainder of 18 (N mod 37 = 18) you must make the number something like 111000 or even larger, so the last three digits can become one of {000, 001, 010, 011, 100, 101, 110, 111}.
Here is a perl script with output showing the first 50 numbers that satisfy the condition, and the minumum number for this limited search is FIVE "1's". There are some duplicate numbers because the way the script works, leading "0" is allowed, hence duplicates can occur:
perl -e '$len=2;$count=0;while ($count < 50) {
for ($j=0; $j<2**$len; $j++) {
$n = "";
for ($i=0; $i<$len; $i++) {
if ($j & (1<<$i)) {
$n .= "1";
}
else {
$n .= "0";
}
}
if (($n % 37) == 18) {
$count++;
$num_1s = ($n =~ tr/"1"//);
print "$n ($num_1s)\n";
}
}
$len++;
}
> '
1101101 (5)
01101101 (5)
101101001 (5)
101001101 (5)
001101101 (5)
1101101000 (5)
1101001100 (5)
1001101100 (5)
1101100001 (5)
1100101001 (5)
0101101001 (5)
1101000101 (5)
1001100101 (5)
1100001101 (5)
0101001101 (5)
1000101101 (5)
0001101101 (5)
1111101101 (8)
1101111101 (8)
1101101111 (8)
01101101000 (5)
01101001100 (5)
01001101100 (5)
10110110010 (6)
10110010110 (6)
10010110110 (6)
01101100001 (5)
01100101001 (5)
00101101001 (5)
01101000101 (5)
01001100101 (5)
01100001101 (5)
00101001101 (5)
01000101101 (5)
00001101101 (5)
11101101101 (8)
01111101101 (8)
01101111101 (8)
01101101111 (8)
101101001000 (5)
101001101000 (5)
001101101000 (5)
101001001100 (5)
001101001100 (5)
001001101100 (5)
110110010010 (6)
110010110010 (6)
010110110010 (6)
110010010110 (6)
010110010110 (6)
010010110110 (6)
101101000001 (5)
101001100001 (5)
001101100001 (5)
101100001001 (5)
100101001001 (5)
101000101001 (5)
001100101001 (5)
100001101001 (5)
000101101001 (5)
111101101001 (8)
101111101001 (8)
101101111001 (8)
101001000101 (5)
001101000101 (5)
001001100101 (5)
101000001101 (5)
001100001101 (5)
100001001101 (5)
000101001101 (5)
111101001101 (8)
101111001101 (8)
001000101101 (5)
000001101101 (5)
111001101101 (8)
011101101101 (8)
101011101101 (8)
001111101101 (8)
101101011101 (8)
101001111101 (8)
001101111101 (8)
101101101011 (8)
101101001111 (8)
101001101111 (8)
001101101111 (8)
----
Good analysis by tutor greenestamps, thanks for posting!
VVVVV VVVVV VVVVV VVVVV VVVVV
-----
Added 7/10/21:
The proof can be completed. As tutor greenestamps points out, the decimal numbers consisting of only "1" and "0" digits which are equal to 18 mod 37, must consist of linear combinations of 26, 10, and 1 in the ABC positions he has outlined:
18:
(1) 18 = 1(10) + 8(1) --> 9 digits
(2) 18 = 18(1) ---> 18 digits (clearly we don't need to check all 1's cases)
18+37=55:
(1) 55 = 2(26) + 3(1) --> 5 digits
(2) 55 = 1(26) + 2(10) + 9(1) --> 12 digits
(3) 55 = 5(10) + 5(1) --> 10 digits
55+37=92:
(1) 92 = 3(26) + 1(10) + 4(1) --> 8 digits
(2) 92 = 2(26) + 4(10) --> 6 digits
(3) 92 = 1(26) + 6(10) + 6(1) --> 13 digits
92+37=129:
(1) 129 = 4(26) + 2(10) + 5(1) --> 11 digits
(2) 129 = 3(26) + 5(10) + 1(1) --> 9 digits
(any fewer 26s and you have more than 6 10s hence more than 6 digits)
129+37=166:
(1) 166 > 5*26 --> MORE THAN 5 digits required
Therefore, the minimum number of digits is indeed 5. Proof complete.