SOLUTION: Fill in the missing vaules in the table below. Show all work in the space provided. (Determine your answer algebraically for part A and B) Q.[Present Value] [Annual Rate] [Compo

Algebra.Com
Question 1165513: Fill in the missing vaules in the table below. Show all work in the space provided. (Determine your answer algebraically for part A and B)
Q.[Present Value] [Annual Rate] [Compounded] [Time] [Future Value] [Interest]
Earned
A. $500 4 1/2 Semi-Annually 2 years _______ ______
B. _____ 5 Quarterly 6 years $1616.83 ______
C. $1250 _______ Monthly 16 months $1381.02 ______
N= I%= PV= PMT= FV= P/Y= C/Y=
D. $875 10.5% Daily ________ $2025 _______
N= I%= PV= PMT= FV= P/Y= C/Y=

Answer by CPhill(2138)   (Show Source): You can put this solution on YOUR website!
```python?code_reference&code_event_index=2
import numpy as np
# --- Part A Calculations ---
PV_A = 500
r_A = 0.045
m_A = 2
t_A = 2
FV_A = PV_A * (1 + r_A / m_A)**(m_A * t_A)
I_A = FV_A - PV_A
# --- Part B Calculations ---
FV_B = 1616.83
r_B = 0.05
m_B = 4
t_B = 6
PV_B = FV_B * (1 + r_B / m_B)**(-m_B * t_B)
I_B = FV_B - PV_B
# --- Part C Calculations ---
PV_C = 1250
FV_C = 1381.02
m_C = 12
t_C_months = 16
t_C = t_C_months / 12
mt_C = m_C * t_C
r_C = m_C * ((FV_C / PV_C)**(1/mt_C) - 1)
I_C = FV_C - PV_C
# --- Part D Calculations ---
PV_D = 875
FV_D = 2025
r_D = 0.105
m_D = 365
# Time t = ln(FV/PV) / (m * ln(1 + r/m))
ratio_D = FV_D / PV_D
log_ratio_D = np.log(ratio_D)
log_term_D = m_D * np.log(1 + r_D / m_D)
t_D = log_ratio_D / log_term_D
I_D = FV_D - PV_D
N_D_periods = t_D * m_D
print(f"A: FV={FV_A:.2f}, I={I_A:.2f}")
print(f"B: PV={PV_B:.2f}, I={I_B:.2f}")
print(f"C: r={r_C:.4f} (Rate is 100 * r), I={I_C:.2f}")
print(f"D: t={t_D:.4f} years, I={I_D:.2f}, N_periods={N_D_periods:.2f}")
```
```text?code_stdout&code_event_index=2
A: FV=546.54, I=46.54
B: PV=1200.01, I=416.82
C: r=0.0750 (Rate is 100 * r), I=131.02
D: t=7.9926 years, I=1150.00, N_periods=2917.29
```
Here are the missing values and the step-by-step algebraic work for each part.
The formula used for compound interest is:
$$FV = PV \left(1 + \frac{r}{m}\right)^{mt}$$
Where $r$ is the annual rate as a decimal, $m$ is the compounding frequency, and $t$ is the time in years.
-----
## Part A: Find Future Value ($FV$) and Interest Earned ($I$)
| $\mathbf{PV}$ | $\mathbf{r}$ | $\mathbf{m}$ | $\mathbf{t}$ | $\mathbf{FV}$ | $\mathbf{I}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\$500$ | $4.5\%$ | 2 (Semi-Annually) | 2 years | **$546.54** | **$46.54** |
### Work:
**1. Calculate Future Value ($FV$)**
Given: $PV=500$, $r=0.045$, $m=2$, $t=2$.
$$FV = 500 \left(1 + \frac{0.045}{2}\right)^{2 \times 2}$$
$$FV = 500 (1.0225)^4$$
$$FV \approx 500 \times 1.09308$$
$$\mathbf{FV \approx \$546.54}$$
**2. Calculate Interest Earned ($I$)**
$$I = FV - PV$$
$$I = 546.54 - 500$$
$$\mathbf{I = \$46.54}$$
-----
## Part B: Find Present Value ($PV$) and Interest Earned ($I$)
| $\mathbf{PV}$ | $\mathbf{r}$ | $\mathbf{m}$ | $\mathbf{t}$ | $\mathbf{FV}$ | $\mathbf{I}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| **$1200.01** | $5\%$ | 4 (Quarterly) | 6 years | $\$1616.83$ | **$416.82** |
### Work:
**1. Calculate Present Value ($PV$)**
Given: $FV=1616.83$, $r=0.05$, $m=4$, $t=6$.
$$PV = FV \left(1 + \frac{r}{m}\right)^{-mt}$$
$$PV = 1616.83 \left(1 + \frac{0.05}{4}\right)^{-4 \times 6}$$
$$PV = 1616.83 (1.0125)^{-24}$$
$$PV \approx 1616.83 \times 0.74247$$
$$\mathbf{PV \approx \$1200.01}$$
**2. Calculate Interest Earned ($I$)**
$$I = FV - PV$$
$$I = 1616.83 - 1200.01$$
$$\mathbf{I = \$416.82}$$
-----
## Part C: Find Annual Rate ($r$) and Interest Earned ($I$)
| $\mathbf{PV}$ | $\mathbf{r}$ | $\mathbf{m}$ | $\mathbf{t}$ | $\mathbf{FV}$ | $\mathbf{I}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\$1250$ | **7.50%** | 12 (Monthly) | 16 months | $\$1381.02$ | **$131.02** |
### Work:
**1. Calculate Annual Rate ($r$)**
Given: $PV=1250$, $FV=1381.02$, $m=12$, $mt=16$ (periods).
$$r = m \left[ \left(\frac{FV}{PV}\right)^{\frac{1}{mt}} - 1 \right]$$
$$r = 12 \left[ \left(\frac{1381.02}{1250}\right)^{\frac{1}{16}} - 1 \right]$$
$$r = 12 \left[ (1.104816)^{\frac{1}{16}} - 1 \right]$$
$$r \approx 12 [1.00625 - 1]$$
$$r \approx 12 [0.00625]$$
$$r \approx 0.0750$$
$$\mathbf{r = 7.50\%}$$
**2. Calculate Interest Earned ($I$)**
$$I = FV - PV$$
$$I = 1381.02 - 1250$$
$$\mathbf{I = \$131.02}$$
**TVM Variables:**
| $\mathbf{N}$ | $\mathbf{I\%}$ | $\mathbf{PV}$ | $\mathbf{PMT}$ | $\mathbf{FV}$ | $\mathbf{P/Y}$ | $\mathbf{C/Y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | 7.50 | -1250 | 0 | 1381.02 | 12 | 12 |
-----
## Part D: Find Time ($t$) and Interest Earned ($I$)
| $\mathbf{PV}$ | $\mathbf{r}$ | $\mathbf{m}$ | $\mathbf{t}$ | $\mathbf{FV}$ | $\mathbf{I}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\$875$ | $10.5\%$ | 365 (Daily) | **7.99 years** | $\$2025$ | **$1150.00** |
### Work:
**1. Calculate Time ($t$)**
Given: $PV=875$, $FV=2025$, $r=0.105$, $m=365$.
$$t = \frac{\ln\left(\frac{FV}{PV}\right)}{m \ln\left(1 + \frac{r}{m}\right)}$$
$$t = \frac{\ln\left(\frac{2025}{875}\right)}{365 \ln\left(1 + \frac{0.105}{365}\right)}$$
$$t = \frac{\ln(2.3142857)}{365 \ln(1.00028767)}$$
$$t \approx \frac{0.83907}{365 \times 0.00028763}$$
$$t \approx \frac{0.83907}{0.10500}$$
$$\mathbf{t \approx 7.99 \text{ years}}$$
**2. Calculate Interest Earned ($I$)**
$$I = FV - PV$$
$$I = 2025 - 875$$
$$\mathbf{I = \$1150.00}$$
**TVM Variables:**
| $\mathbf{N}$ | $\mathbf{I\%}$ | $\mathbf{PV}$ | $\mathbf{PMT}$ | $\mathbf{FV}$ | $\mathbf{P/Y}$ | $\mathbf{C/Y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2917.29 | 10.5 | -875 | 0 | 2025 | 365 | 365 |
*(Note: $N$ is the total number of compounding periods, $N = mt \approx 365 \times 7.9926 \approx 2917.29$ days)*

RELATED QUESTIONS

Evaluate 27*0.24. Show all work in the space below. Grid your answerin the space... (answered by Boreal)
Solve the equation Quantity 4 x plus 8 all over 2 = −10 for x. Please show your... (answered by checkley79)
Solve the equation x-5/4 = 3 for x. Please show your work and solution in the space... (answered by solver91311)
Given the equation below, find four ordered pair solutions by completing the table,... (answered by ikleyn)
Given the equation below, find four ordered pair solutions by completing the table,... (answered by stanbon)
9) Given the equation below, find four ordered pair solutions by completing the table,... (answered by MathLover1)
Given the equation below, find four ordered pair solutions by completing the table,... (answered by ikleyn)
Note: Enter your answer and show all the steps that you use to solve this problem in the... (answered by rfer)