SOLUTION: Using the quantitative data in Question#8 on Assignment 1 find: a) P and P
12 Points
18 63
b) The 5-number summary.
c) Using the 5-number summary construct a box-and-whisker pl
Algebra.Com
Question 1165425: Using the quantitative data in Question#8 on Assignment 1 find: a) P and P
12 Points
18 63
b) The 5-number summary.
c) Using the 5-number summary construct a box-and-whisker plot.
d) Are any of the data values considered to be an outlier? (Prove mathematically.)
Recall the ordered data from Q8:
10
31
38
42
49
52
59
27
32
39
44
49
54
60
28
33
40
45
50
57
60
30
35
40
46
51
57
62
30
36
40
47
51
58
63
Answer by CPhill(2138) (Show Source): You can put this solution on YOUR website!
```python?code_reference&code_event_index=2
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Data provided by the user (35 points)
data_raw = [
10, 31, 38, 42, 49, 52, 59,
27, 32, 39, 44, 49, 54, 60,
28, 33, 40, 45, 50, 57, 60,
30, 35, 40, 46, 51, 57, 62,
30, 36, 40, 47, 51, 58, 63
]
# Sort the data
data_sorted = np.sort(data_raw)
N = len(data_sorted)
# Print sorted data for reference
print(f"Number of data points (N): {N}")
print(f"Sorted Data: {data_sorted.tolist()}")
# --- Part a: P_18 and P_63 ---
# Position L = (P/100) * N. Since L is not an integer, we round up (Type 6 method)
# P_18: L = 0.18 * 35 = 6.3 -> 7th position (Index 6)
P18_pos = int(np.ceil(0.18 * N))
P18 = data_sorted[P18_pos - 1]
# P_63: L = 0.63 * 35 = 22.05 -> 23rd position (Index 22)
P63_pos = int(np.ceil(0.63 * N))
P63 = data_sorted[P63_pos - 1]
print(f"\n--- Part (a) Results ---")
print(f"P_18 Position: {P18_pos} (Value: {P18})")
print(f"P_63 Position: {P63_pos} (Value: {P63})")
# --- Part b: 5-Number Summary ---
# Q2 (Median): Position (N+1)/2 = 18th position (Index 17)
Q2_pos = int((N + 1) / 2)
Q2 = data_sorted[Q2_pos - 1]
# Q1: Position L = 0.25 * 35 = 8.75 -> 9th position (Index 8)
Q1_pos = int(np.ceil(0.25 * N))
Q1 = data_sorted[Q1_pos - 1]
# Q3: Position L = 0.75 * 35 = 26.25 -> 27th position (Index 26)
Q3_pos = int(np.ceil(0.75 * N))
Q3 = data_sorted[Q3_pos - 1]
Min = data_sorted[0]
Max = data_sorted[-1]
five_number_summary = {
'Minimum': Min,
'Q1': Q1,
'Median (Q2)': Q2,
'Q3': Q3,
'Maximum': Max
}
print(f"\n--- Part (b) 5-Number Summary ---")
print(five_number_summary)
# --- Part d: Outlier Check ---
IQR = Q3 - Q1
LF = Q1 - 1.5 * IQR
UF = Q3 + 1.5 * IQR
outliers = data_sorted[(data_sorted < LF) | (data_sorted > UF)]
print(f"\n--- Part (d) Outlier Analysis ---")
print(f"IQR: {IQR}")
print(f"Lower Fence (LF): {LF}")
print(f"Upper Fence (UF): {UF}")
print(f"Outliers: {outliers.tolist()}")
# --- Part c: Box-and-Whisker Plot ---
plt.figure(figsize=(10, 3))
plt.boxplot(data_sorted, vert=False, whis=1.5,
patch_artist=True, boxprops=dict(facecolor='lightblue'))
plt.title('Box-and-Whisker Plot of the Data')
plt.xlabel('Data Value')
plt.yticks([1], ['Data'])
plt.grid(axis='x', linestyle='--')
plt.savefig('box_whisker_plot.png')
print("box_whisker_plot.png saved.")
```
```text?code_stdout&code_event_index=2
Number of data points (N): 35
Sorted Data: [10, 27, 28, 30, 30, 31, 32, 33, 35, 36, 38, 39, 40, 40, 40, 42, 44, 45, 46, 47, 49, 49, 50, 51, 51, 52, 54, 57, 57, 58, 59, 60, 60, 62, 63]
--- Part (a) Results ---
P_18 Position: 7 (Value: 32)
P_63 Position: 23 (Value: 50)
--- Part (b) 5-Number Summary ---
{'Minimum': 10, 'Q1': 35, 'Median (Q2)': 45, 'Q3': 54, 'Maximum': 63}
--- Part (d) Outlier Analysis ---
IQR: 19
Lower Fence (LF): 6.5
Upper Fence (UF): 82.5
Outliers: []
box_whisker_plot.png saved.
```
[image-tag: code-generated-image-0-1765580998019185932]
The data set consists of $N=35$ values. The sorted data list is:
$$10, 27, 28, 30, 30, 31, 32, 33, 35, 36, 38, 39, 40, 40, 40, 42, 44, 45, 46, 47, 49, 49, 50, 51, 51, 52, 54, 57, 57, 58, 59, 60, 60, 62, 63$$
## a) Calculate Percentiles ($P_{18}$ and $P_{63}$)
We use the position formula $L = \frac{P}{100} \times N$, and since the results are not integers, we round up to find the position.
### $P_{18}$
1. **Position ($L_{18}$):** $L_{18} = \frac{18}{100} \times 35 = 6.3$.
2. **Rounded Position:** Round up to the $\mathbf{7^{th}}$ position.
3. **Value:** The $7^{th}$ value in the sorted list is $\mathbf{32}$.
$$\mathbf{P_{18} = 32}$$
### $P_{63}$
1. **Position ($L_{63}$):** $L_{63} = \frac{63}{100} \times 35 = 22.05$.
2. **Rounded Position:** Round up to the $\mathbf{23^{rd}}$ position.
3. **Value:** The $23^{rd}$ value in the sorted list is $\mathbf{50}$.
$$\mathbf{P_{63} = 50}$$
-----
## b) The 5-Number Summary
The 5-number summary requires the Minimum, $Q_1$, $Q_2$ (Median), $Q_3$, and Maximum. We use the same position method (rounding up non-integer positions) for quartiles.
### Work:
1. **Minimum:** The smallest value is $\mathbf{10}$.
2. **Maximum:** The largest value is $\mathbf{63}$.
3. **Median ($Q_2$):** Position $M = \frac{35 + 1}{2} = 18$. The $18^{th}$ value is $\mathbf{45}$.
4. **First Quartile ($Q_1$):** Position $L_1 = \frac{25}{100} \times 35 = 8.75$. Round up to the $\mathbf{9^{th}}$ position. The $9^{th}$ value is $\mathbf{35}$.
5. **Third Quartile ($Q_3$):** Position $L_3 = \frac{75}{100} \times 35 = 26.25$. Round up to the $\mathbf{27^{th}}$ position. The $27^{th}$ value is $\mathbf{54}$.
| Statistic | Value |
| :---: | :---: |
| **Minimum** | $\mathbf{10}$ |
| **$Q_1$** | $\mathbf{35}$ |
| **Median ($Q_2$)** | $\mathbf{45}$ |
| **$Q_3$** | $\mathbf{54}$ |
| **Maximum** | $\mathbf{63}$ |
-----
## c) Construct a Box-and-Whisker Plot
The box-and-whisker plot is constructed using the 5-number summary found in part (b). The box spans from $Q_1$ (35) to $Q_3$ (54), with the median (45) marked inside. The whiskers extend to the minimum (10) and maximum (63), since no outliers were found (see part d).
-----
## d) Are any of the data values considered to be an outlier? (Prove mathematically.)
To determine outliers, we calculate the Interquartile Range ($IQR$) and the Lower and Upper Fences.
### Work:
1. **Interquartile Range ($IQR$):**
$$IQR = Q_3 - Q_1 = 54 - 35 = \mathbf{19}$$
2. **Lower Fence ($LF$):**
$$LF = Q_1 - 1.5 \times IQR = 35 - 1.5(19) = 35 - 28.5 = \mathbf{6.5}$$
3. **Upper Fence ($UF$):**
$$UF = Q_3 + 1.5 \times IQR = 54 + 1.5(19) = 54 + 28.5 = \mathbf{82.5}$$
**Outlier Rule:** A data value is an outlier if it is less than $6.5$ or greater than $82.5$.
### Conclusion:
* **Minimum value:** $10$. Since $10 > 6.5$, it is **not** a low outlier.
* **Maximum value:** $63$. Since $63 < 82.5$, it is **not** a high outlier.
**No, none of the data values are considered to be an outlier.**
RELATED QUESTIONS
1) A bank asks customers to evaluate the drive-thru service as good, average, or poor.... (answered by Boreal)
GRAPHICAL ANALYSIS OF DATA
1. The list below shows the ages of the first 20 fans to... (answered by ikleyn)
Suppose X is random variable from a normal distribution with mean=10 and standard... (answered by Fombitz)
7. Which of the following is a characteristic of a binomial probability experiment?
A.... (answered by stanbon)
ASSIGNMENT
Course Code : MS-08
Course Title : Quantitative Analysis for... (answered by edjones)
I've been trying to answer this question but I don't know how to find b and how to... (answered by greenestamps)
Question 8 of 20 1.0 Points
The following data were obtained from a survey of college... (answered by lynnlo)
The following data is the length of time (in minutes) consumed by 24 students in... (answered by CPhill)
MAT 145: Topics In Contemporary Math
QUESTION 12
Convert the message (answered by ikleyn)