SOLUTION: The first three terms of a geometric progression are 100, 90 and 81. Find the common ratio of this progression.?

Algebra.Com
Question 1029021: The first three terms of a geometric progression are 100, 90 and 81.
Find the common ratio of this progression.?

Found 2 solutions by Boreal, stanbon:
Answer by Boreal(15235)   (Show Source): You can put this solution on YOUR website!
The common ratio: 90/100=0.9
Try it for the next one: 81/90=0.9
The common ratio is 0.9. The next term will be 72.9

Answer by stanbon(75887)   (Show Source): You can put this solution on YOUR website!
first three terms of a geometric progression are 100, 90 and 81.
Find the common ratio of this progression.
-----
r = 90/100 = 0.9
---------------------
Cheers,
Stan H.
----

RELATED QUESTIONS

The first term of an arithmetic progression is 12 and the sum of the first 16 terms is... (answered by greenestamps)
the first three terms of a geometric progression are 100,90 and 81. Find out the... (answered by Theo)
the first three terms of a geometric progression are 100,90 and 81 , the common ratio is... (answered by Fombitz)
the first three terms of a geometric progression are 100,90 and 81 , the common ratio... (answered by ikleyn)
The 2nd, 4th and 8th terms of an arithmetic progression are the three consecutive terms... (answered by mananth)
The sum of the first 100 terms of an arithmetic progression is 10000; the first, second... (answered by mananth)
A geometric progression and an arithmetic progression have the same first term. The... (answered by htmentor)
In a geometric progression,the 6th term is 96 and the common ratio is -2. Find the sum of (answered by ikleyn)
A geometric progression has 6 terms. The first term is 192 and the common ratio is 1.5.... (answered by greenestamps)