SOLUTION: The problem is stated as:
{{{ (d/dx) int((sqrt(2+t^2)),dt,0,2)}}}
I've done integral problems before but what is the purpose of the d/dx in front? that is throwing me off. I
Algebra.Com
Question 1004964: The problem is stated as:
I've done integral problems before but what is the purpose of the d/dx in front? that is throwing me off. I don't know what this problem needs in order to be solved.
Please help
Thank you
Answer by jim_thompson5910(35256) (Show Source): You can put this solution on YOUR website!
If there are no x variables on either limit of integration, then the answer is simply 0. Here is why
The value of is simply a constant. We don't need to know what actual constant it is, but we definitely know it is NOT a variable. It's a fixed number. So where C is a fixed number. The value of C is equal to the area under the curve from t = 0 to t = 2.
Taking the derivative of any constant leads to 0. . In a visual sense, all constant functions have graphs that are horizontal straight and flat lines. Any tangent line will have a slope of 0. So again, the derivative of a constant function is always 0.
In the end,
Note: this only applies IF there are no x variables anywhere in the limits of integration.
RELATED QUESTIONS
{{{int(sqrt(3 + t^2),dt,sin(x),2)}}}, calculate dy/dx. I know how to do the integral... (answered by solver91311,ikleyn)
what is the indefinite integral of... (answered by ewatrrr)
Evaluate the definite integral
int(root x(14x^2 -10x +9),dx, 0,... (answered by Edwin McCravy)
Please help me solve this equation:
Explain why the following integrals are improper and (answered by Fombitz)
Evaluate the double integral by converting it into polar coordinates: integral from 1 to (answered by CPhill,ikleyn)
Is the integral converges ??
integral [0 to pi/2] (x/cosx)sin(tgx)... (answered by Fombitz)
Hi there,
This problem isn't exactly quadratic equation, but it is part of a group of... (answered by jim_thompson5910)
Solve the initial-value problem d^(2)y/dt^(2)+4dy/dt+4y=0,y(1)=0,y′(1)=1.... (answered by robertb)
find dy/dx
x=9/t
y=t-t^2
I got as far as: dx/dt=-9t^-2 and dy/dt=1-2t... (answered by josgarithmetic)