SOLUTION: Let x_1, x_2, \dots, x_{100} be real numbers. If x_1^2 + 2x_2^2 + \dots + 100x_{100}^2 = 1, then find the maximum value of x_1/1 + x_2/2 + \dots + x_{100}/100.

Algebra.Com
Question 1209925: Let x_1, x_2, \dots, x_{100} be real numbers. If
x_1^2 + 2x_2^2 + \dots + 100x_{100}^2 = 1,
then find the maximum value of x_1/1 + x_2/2 + \dots + x_{100}/100.

Answer by CPhill(1987)   (Show Source): You can put this solution on YOUR website!
Let $a_k = x_k \sqrt{k}$ for $k = 1, 2, \dots, 100$.
Then the given condition becomes
$$\sum_{k=1}^{100} x_k^2 k = \sum_{k=1}^{100} a_k^2 = 1$$
We want to find the maximum value of
$$S = \sum_{k=1}^{100} \frac{x_k}{k} = \sum_{k=1}^{100} \frac{a_k}{k\sqrt{k}}$$
By the Cauchy-Schwarz inequality, we have
$$\left( \sum_{k=1}^{100} \frac{a_k}{k\sqrt{k}} \right)^2 \le \left( \sum_{k=1}^{100} a_k^2 \right) \left( \sum_{k=1}^{100} \frac{1}{k^3} \right)$$
Since $\sum_{k=1}^{100} a_k^2 = 1$, we have
$$S^2 \le \sum_{k=1}^{100} \frac{1}{k^3}$$
$$S \le \sqrt{\sum_{k=1}^{100} \frac{1}{k^3}}$$
Thus, the maximum value of $\sum_{k=1}^{100} \frac{x_k}{k}$ is $\sqrt{\sum_{k=1}^{100} \frac{1}{k^3}}$.
To achieve equality in Cauchy-Schwarz inequality, we need
$$\frac{a_1}{1\sqrt{1}} = \frac{a_2}{2\sqrt{2}} = \dots = \frac{a_{100}}{100\sqrt{100}} = c$$
where $c$ is a constant.
Then $a_k = ck\sqrt{k}$, so $x_k \sqrt{k} = ck\sqrt{k}$, which means $x_k = ck$.
Substituting into the given condition, we have
$$\sum_{k=1}^{100} kx_k^2 = \sum_{k=1}^{100} k(ck)^2 = c^2 \sum_{k=1}^{100} k^3 = 1$$
$$c^2 = \frac{1}{\sum_{k=1}^{100} k^3}$$
$$c = \frac{1}{\sqrt{\sum_{k=1}^{100} k^3}}$$
Then $x_k = \frac{k}{\sqrt{\sum_{k=1}^{100} k^3}}$.
Therefore, the maximum value of $\sum_{k=1}^{100} \frac{x_k}{k}$ is $\sqrt{\sum_{k=1}^{100} \frac{1}{k^3}}$.
Final Answer: The final answer is $\boxed{\sqrt{\sum_{k=1}^{100} \frac{1}{k^3}}}$

RELATED QUESTIONS

Let x_1, x_2, \dots, x_{100} be real numbers. If x_1 + 2x_2 + \dots + 100x_{100} = 1,... (answered by CPhill,ikleyn)
Let x_1, x_2, \dots, x_n be real numbers. If x_1^2 + 2x_2^2 + \dots + nx_n^2 = 1, then (answered by CPhill)
Let x_1, x_2, \dots, x_n be real numbers. If x_1 + 2x_2 + \dots + nx_n = 1, then find... (answered by CPhill)
Let x, y, and z be real numbers. If x^2 + y^2 + z^2 = 1, then find the maximum value of (answered by CPhill,ikleyn)
A permutation of the numbers (1,2,3,\dots,n) is a rearrangement of the numbers in which... (answered by CPhill)
A permutation of the numbers (1,2,3,\dots,n) is a rearrangement of the numbers in which... (answered by CPhill,ikleyn)
Let x and y be nonnegative real numbers. If x^2 + 5y^2 = 30, then find the maximum value (answered by ikleyn,math_tutor2020)
x^2+(x+1)^2=100 (answered by nerdybill)
Solve: (x + 1)^2 =... (answered by Fombitz)