SOLUTION: Let S = {1, x, y, x + y} where 1< x < y < x + y then the difference between the mean and the median of S is

Algebra.Com
Question 919739: Let S = {1, x, y, x + y} where 1< x < y < x + y then the difference between the mean and
the median of S is

Answer by richard1234(7193)   (Show Source): You can put this solution on YOUR website!
Mean = (2x+2y+1)/4

Median = (x+y)/2 (by definition)

Difference = |(2x+2y+1)/4 - (x+y)/2| = 1/4

RELATED QUESTIONS

Two numbers are added and the sum is s, and their difference is 1/mth of the larger.... (answered by Edwin McCravy)
If x and y are real number and y/x=x /1,then 'y' cannot take the value of (s) (answered by Alan3354)
Let f(x)=(x−8)^2(x+7)^3. Find the y-intercept(s), the x-intercept(s), the values of (answered by lwsshak3)
I have a problem where on a graph, x= -5, -4, -3, -2 and y= 2, 0, -2, -4. How do I write (answered by ewatrrr)
How do I graph y = x + 1/x And how do I know where the asymptote/s is/are???... (answered by richwmiller)
The mean of 1,2,x,11,y,14 is 8 and the median is 9 (answered by greenestamps)
Using Cramer’s rule method, find the value of x and y when given the following two... (answered by ikleyn)
Given the proportions x+y/y = r/s and x-y/x+y = s/y , what can you... (answered by josgarithmetic)
1. If X^2+x+1=0 ,then what is the value of (x^3+1/x^3)^3 ? 2. If X^X+Y=Y^3 and... (answered by Edwin McCravy)