How do you solve x³ = 1? x³ = 1 x³ - 1 = 0 Factor the difference of cubes: (x - 1)(x² + x + 1) = 0 Set each factor equal to 0 Setting first factor = 0 x - 1 = 0 x = 1 (that's ONE solution). Setting second factor = 0 x² + x + 1 = 0 Use the quadratic formula: ______ -b ± Öb²-4ac x = ————————————— 2a where a = 1; b = 1; c = 1 _____________ -(1) ± Ö(1)²-4(1)(1) x = ———————————————————————— 2(1) _____ -1 ± Ö1-4 x = ————————————— 2 __ -1 ± Ö-3 x = ——————————— 2 _ -1 ± iÖ3 x = ——————————— 2 To write these in the form A ± Bi _ -1 Ö3 x = ———— ± ————·i 2 2 So there are three solutions: (1) x = 1 _ -1 Ö3 (2) x = ———— + ————·i 2 2 _ -1 Ö3 (3) x = ———— - ————·i 2 2 Edwin