Find the equation of the circle passing through the points (1,2),(3,6),(5,4).
We start with: <==== Standard form of the equation of a CIRCLE:
Point: (1, 2)
---- Standard form of the equation of a CIRCLE
---- Substituting (1, 2) for (x, y)
1 - 2h + h2 + 4 - 4k + k2 = r2
h2 - 2h + k2 - 4k + 5 = r2 ----- eq (i)
Point: (3, 6)
---- Standard form of the equation of a CIRCLE
---- Substituting (3, 6) for (x, y)
9 - 6h + h2 + 36 - 12k + k2 = r2
h2 - 6h + k2 - 12k + 45 = r2 ----- eq (ii)
Point: (5, 4)
---- Standard form of the equation of a CIRCLE
---- Substituting (5, 4) for (x, y)
25 - 10h + h2 + 16 - 8k + k2 = r2
h2 - 10h + k2 - 8k + 41 = r2 ----- eq (iii)
h2 - 2h + k2 - 4k + 5 = r2 ----- eq (i)
h2 - 6h + k2 - 12k + 45 = r2 ----- eq (ii)
h2 - 10h + k2 - 8k + 41 = r2 ----- eq (iii)
4h + 8k - 40 = 0 ----- Subtracting eq (ii) from eq (i)
4h + 8k = 40
4(h + 2k) = 4(10)
h + 2k = 10 ---- eq (iv)
4h - 4k + 4 = 0 ----- Subtracting eq (iii) from eq (ii)
4h - 4k = - 4
4(h - k) = 4(- 1)
h - k = - 1 --- eq (v)
h + 2k = 10 ---- eq (iv)
h - k = - 1 --- eq (v)
3k = 11 ---- Subtracting eq (v) from eq (iv)
h - = - 1 ---- Substituting for k in eq (v)
(x - h)2 + (y - k)2 = r2
-- Substituting (1, 2) for (x, y), and () for (h, k)
<==== Standard form of the equation of a CIRCLE
--- Substituting () for (h, k), and for r2