SOLUTION: The region R in the first quadrant is bounded by y=6sin(πx/2), y=6(x-2)^2 and y=4x+2, and contains the point (2,6) The volume of the solid generated by rotating R about the x-a

Algebra.Com
Question 1167905: The region R in the first quadrant is bounded by y=6sin(πx/2), y=6(x-2)^2 and y=4x+2, and contains the point (2,6)
The volume of the solid generated by rotating R about the x-axis is:
The volume of the solid generated by rotating R about the y-axis is:
The volume of the solid with R as its base and square cross-sections perpendicular to the x-axis (and to the xy-plane) is:

Answer by CPhill(1959)   (Show Source): You can put this solution on YOUR website!
The region R is bounded by three curves in the first quadrant:
1. $y = f(x) = 6\sin(\pi x / 2)$
2. $y = g(x) = 6(x-2)^2$
3. $y = h(x) = 4x + 2$
First, let's find the intersection points of these curves to define the vertices of region R:
* **Intersection of $y=6\sin(\pi x/2)$ and $y=4x+2$:**
At $x=1$, $y = 6\sin(\pi/2) = 6$. And $y = 4(1)+2 = 6$. So, $(1,6)$ is an intersection point.
* **Intersection of $y=6(x-2)^2$ and $y=4x+2$:**
$6(x-2)^2 = 4x+2$
$6(x^2 - 4x + 4) = 4x+2$
$6x^2 - 24x + 24 = 4x+2$
$6x^2 - 28x + 22 = 0$
$3x^2 - 14x + 11 = 0$
Using the quadratic formula, $x = \frac{14 \pm \sqrt{(-14)^2 - 4(3)(11)}}{2(3)} = \frac{14 \pm \sqrt{196 - 132}}{6} = \frac{14 \pm \sqrt{64}}{6} = \frac{14 \pm 8}{6}$.
This gives $x=1$ (where $y=6$) and $x=11/3$.
For $x=11/3$, $y = 4(11/3)+2 = 44/3 + 6/3 = 50/3$. So, $(11/3, 50/3)$ is an intersection point.
* **Intersection of $y=6\sin(\pi x/2)$ and $y=6(x-2)^2$:**
At $x=1$, $y = 6\sin(\pi/2) = 6$ and $y = 6(1-2)^2 = 6$. So, $(1,6)$ is an intersection point.
At $x=2$, $y = 6\sin(\pi) = 0$ and $y = 6(2-2)^2 = 0$. So, $(2,0)$ is an intersection point.
The three vertices of the region R are $(1,6)$, $(2,0)$, and $(11/3, 50/3)$. The region contains the point $(2,6)$.
Based on these vertices and the condition that the point $(2,6)$ is contained within the region, the boundaries of the region R are defined as:
* **Upper boundary ($y_U(x)$):** $y = 4x+2$ (from $x=1$ to $x=11/3$).
* **Lower boundary ($y_L(x)$):** This is piecewise.
* From $x=1$ to $x=2$: $y = 6\sin(\pi x/2)$ (connects $(1,6)$ to $(2,0)$).
* From $x=2$ to $x=11/3$: $y = 6(x-2)^2$ (connects $(2,0)$ to $(11/3, 50/3)$).
---
### 1. Volume of the solid generated by rotating R about the x-axis (Washer Method)
The volume $V_x$ is given by $V_x = \pi \int_{x_1}^{x_2} (y_{U}(x)^2 - y_{L}(x)^2) dx$.
We split the integral into two parts based on the piecewise lower boundary:
$V_x = \pi \left[ \int_{1}^{2} ((4x+2)^2 - (6\sin(\pi x/2))^2) dx + \int_{2}^{11/3} ((4x+2)^2 - (6(x-2)^2)^2) dx \right]$
**Part 1: $\int_{1}^{2} ((4x+2)^2 - 36\sin^2(\pi x/2)) dx$**
$(4x+2)^2 = 16x^2 + 16x + 4$
$36\sin^2(\pi x/2) = 36 \frac{1-\cos(\pi x)}{2} = 18 - 18\cos(\pi x)$
Integral 1 = $\int_{1}^{2} (16x^2 + 16x + 4 - (18 - 18\cos(\pi x))) dx$
$= \int_{1}^{2} (16x^2 + 16x - 14 + 18\cos(\pi x)) dx$
$= \left[ \frac{16x^3}{3} + 8x^2 - 14x + \frac{18\sin(\pi x)}{\pi} \right]_{1}^{2}$
$= \left( \frac{16(2)^3}{3} + 8(2)^2 - 14(2) + \frac{18\sin(2\pi)}{\pi} \right) - \left( \frac{16(1)^3}{3} + 8(1)^2 - 14(1) + \frac{18\sin(\pi)}{\pi} \right)$
$= \left( \frac{128}{3} + 32 - 28 + 0 \right) - \left( \frac{16}{3} + 8 - 14 + 0 \right)$
$= \left( \frac{128}{3} + 4 \right) - \left( \frac{16}{3} - 6 \right)$
$= \frac{140}{3} - \left(-\frac{2}{3}\right) = \frac{142}{3}$
**Part 2: $\int_{2}^{11/3} ((4x+2)^2 - (6(x-2)^2)^2) dx$**
$(6(x-2)^2)^2 = 36(x-2)^4$
Integral 2 = $\int_{2}^{11/3} (16x^2 + 16x + 4 - 36(x-2)^4) dx$
$= \left[ \frac{16x^3}{3} + 8x^2 + 4x - \frac{36(x-2)^5}{5} \right]_{2}^{11/3}$
$= \left( \frac{16(11/3)^3}{3} + 8(11/3)^2 + 4(11/3) - \frac{36}{5}(\frac{11}{3}-2)^5 \right) - \left( \frac{16(2)^3}{3} + 8(2)^2 + 4(2) - \frac{36}{5}(2-2)^5 \right)$
$= \left( \frac{16 \cdot 1331}{81} + \frac{8 \cdot 121}{9} + \frac{44}{3} - \frac{36}{5}(\frac{5}{3})^5 \right) - \left( \frac{128}{3} + 32 + 8 - 0 \right)$
$= \left( \frac{21296}{81} + \frac{968}{9} + \frac{44}{3} - \frac{36}{5} \frac{3125}{243} \right) - \left( \frac{128}{3} + 40 \right)$
$= \left( \frac{21296}{81} + \frac{8712}{81} + \frac{1188}{81} - \frac{7500}{81} \right) - \left( \frac{128}{3} + \frac{120}{3} \right)$
$= \frac{23696}{81} - \frac{248}{3} = \frac{23696}{81} - \frac{6696}{81} = \frac{17000}{81}$
Total Volume $V_x = \pi \left( \frac{142}{3} + \frac{17000}{81} \right) = \pi \left( \frac{142 \cdot 27}{81} + \frac{17000}{81} \right)$
$V_x = \pi \left( \frac{3834}{81} + \frac{17000}{81} \right) = \frac{20834\pi}{81}$
The volume of the solid generated by rotating R about the x-axis is: $\boxed{\frac{20834\pi}{81}}$
---
### 2. Volume of the solid generated by rotating R about the y-axis (Shell Method)
The volume $V_y$ is given by $V_y = 2\pi \int_{x_1}^{x_2} x (y_{U}(x) - y_{L}(x)) dx$.
$V_y = 2\pi \left[ \int_{1}^{2} x((4x+2) - 6\sin(\pi x/2)) dx + \int_{2}^{11/3} x((4x+2) - 6(x-2)^2) dx \right]$
**Part 1: $\int_{1}^{2} x(4x+2 - 6\sin(\pi x/2)) dx = \int_{1}^{2} (4x^2 + 2x - 6x\sin(\pi x/2)) dx$**
$\int (4x^2 + 2x) dx = \frac{4x^3}{3} + x^2$
$\int -6x\sin(\pi x/2) dx$. Use integration by parts for $\int x\sin(ax)dx = -\frac{x\cos(ax)}{a} + \frac{\sin(ax)}{a^2}$. Here $a=\pi/2$.
So, $-6 \left[ -\frac{2x}{\pi}\cos(\frac{\pi x}{2}) + \frac{4}{\pi^2}\sin(\frac{\pi x}{2}) \right]_{1}^{2}$
$= -6 \left[ \left(-\frac{4}{\pi}\cos(\pi) + \frac{4}{\pi^2}\sin(\pi) \right) - \left(-\frac{2}{\pi}\cos(\frac{\pi}{2}) + \frac{4}{\pi^2}\sin(\frac{\pi}{2}) \right) \right]$
$= -6 \left[ \left(\frac{4}{\pi} + 0 \right) - \left(0 + \frac{4}{\pi^2} \right) \right]$
$= -6 \left( \frac{4}{\pi} - \frac{4}{\pi^2} \right) = -\frac{24}{\pi} + \frac{24}{\pi^2}$
For the polynomial part: $\left[ \frac{4x^3}{3} + x^2 \right]_{1}^{2} = \left(\frac{4(2)^3}{3} + (2)^2 \right) - \left(\frac{4(1)^3}{3} + (1)^2 \right) = \left(\frac{32}{3} + 4 \right) - \left(\frac{4}{3} + 1 \right) = \frac{44}{3} - \frac{7}{3} = \frac{37}{3}$
Integral 1 Value = $\frac{37}{3} - \frac{24}{\pi} + \frac{24}{\pi^2}$
**Part 2: $\int_{2}^{11/3} x((4x+2) - 6(x-2)^2) dx$**
$= \int_{2}^{11/3} x(4x+2 - 6(x^2-4x+4)) dx$
$= \int_{2}^{11/3} x(4x+2 - 6x^2+24x-24) dx$
$= \int_{2}^{11/3} (-6x^3 + 28x^2 - 22x) dx$
$= \left[ -\frac{6x^4}{4} + \frac{28x^3}{3} - \frac{22x^2}{2} \right]_{2}^{11/3}$
$= \left[ -\frac{3x^4}{2} + \frac{28x^3}{3} - 11x^2 \right]_{2}^{11/3}$
$= \left( -\frac{3(11/3)^4}{2} + \frac{28(11/3)^3}{3} - 11(11/3)^2 \right) - \left( -\frac{3(2)^4}{2} + \frac{28(2)^3}{3} - 11(2)^2 \right)$
$= \left( -\frac{3 \cdot 14641}{2 \cdot 81} + \frac{28 \cdot 1331}{3 \cdot 27} - \frac{11 \cdot 121}{9} \right) - \left( -\frac{3 \cdot 16}{2} + \frac{28 \cdot 8}{3} - 11 \cdot 4 \right)$
$= \left( -\frac{14641}{54} + \frac{37268}{81} - \frac{1331}{9} \right) - \left( -24 + \frac{224}{3} - 44 \right)$
$= \left( \frac{-43923 + 74536 - 23958}{162} \right) - \left( \frac{-72 + 224 - 132}{3} \right)$
$= \frac{6655}{162} - \frac{20}{3} = \frac{6655}{162} - \frac{1080}{162} = \frac{5575}{162}$
Total Volume $V_y = 2\pi \left( \left( \frac{37}{3} - \frac{24}{\pi} + \frac{24}{\pi^2} \right) + \frac{5575}{162} \right)$
$V_y = 2\pi \left( \frac{1998}{162} + \frac{5575}{162} - \frac{24}{\pi} + \frac{24}{\pi^2} \right)$
$V_y = 2\pi \left( \frac{7573}{162} - \frac{24}{\pi} + \frac{24}{\pi^2} \right)$
The volume of the solid generated by rotating R about the y-axis is: $\boxed{2\pi \left( \frac{7573}{162} - \frac{24}{\pi} + \frac{24}{\pi^2} \right)}$
---
### 3. Volume of the solid with R as its base and square cross-sections perpendicular to the x-axis (and to the xy-plane)
The volume $V_s$ is given by $V_s = \int_{x_1}^{x_2} (y_{U}(x) - y_{L}(x))^2 dx$.
This is the same integral as for $V_x$, but without the $\pi$ factor.
$V_s = \left[ \int_{1}^{2} ((4x+2)^2 - (6\sin(\pi x/2))^2) dx + \int_{2}^{11/3} ((4x+2)^2 - (6(x-2)^2)^2) dx \right]$
Using the results from the $V_x$ calculation:
$V_s = \frac{142}{3} + \frac{17000}{81} = \frac{3834}{81} + \frac{17000}{81} = \frac{20834}{81}$
The volume of the solid with R as its base and square cross-sections perpendicular to the x-axis (and to the xy-plane) is: $\boxed{\frac{20834}{81}}$

RELATED QUESTIONS

The region bounded by curves y = x and y = x^2 in the first quadrant of the xy-plane is... (answered by ewatrrr)
What is the area of the region bounded by the curves {{{ y = arcSin(x) + x - x^2 }}} and... (answered by robertb)
Region R is bounded by the curve y = x^2 + 2 and the line y = 6 - x^2 . Find... (answered by htmentor)
I need help with this please: Find the area of the region in the first quadrant bounded... (answered by Boreal)
Find the area of the region in the first quadrant bounded by the line y=3x, the line x=5, (answered by MathLover1)
Find the area bounded by the equation x/-5 + y/2=1on the first quadrant and the line x =... (answered by MathLover1)
Find the VOLUME of the solid generated by revolving the region described about the... (answered by robertb)
determine the volume of the solid obtained by rotating the region bounded by x= y-5 and... (answered by greenestamps)
find the number k>1 such that the region bounded by the curves y=1, y=x^-2, and x=k has... (answered by robertb)