(K • ∼C) ⊃ ∼(P • R)/ J ⊃ (K • P)/ A ⊃ (P • R) Conclusion: (A • J) ⊃ C Start the indirect truth table by putting an F under the ⊃ in the conclusion. We are assuming that the conclusion is false. If we can now show that this makes one of the premises false, then we will have shown that the assumption that the conclusion was false was a bad assumption. Thus the conclusion will be true, and the argument valid. (K • ∼C) ⊃ ∼(P • R)/ J ⊃ (K • P)/ A ⊃ (P • R) Conclusion: (A • J) ⊃ C F The only way that can be false is for (A • J) to be true and C false, so put a T under the • and F under the C (K • ∼C) ⊃ ∼(P • R)/ J ⊃ (K • P)/ A ⊃ (P • R) Conclusion: (A • J) ⊃ C T F F No you can put F's under all the C's (K • ∼C) ⊃ ∼(P • R)/ J ⊃ (K • P)/ A ⊃ (P • R) Conclusion: (A • J) ⊃ C F T F F Since C s false, ~C is true so put a T under the ~ of ~C (K • ∼C) ⊃ ∼(P • R)/ J ⊃ (K • P)/ A ⊃ (P • R) Conclusion: (A • J) ⊃ C TF T F F The only way (A • J) can be true is for both A and J to be true, so put T's under all the A's and J's: (K • ∼C) ⊃ ∼(P • R)/ J ⊃ (K • P)/ A ⊃ (P • R) Conclusion: (A • J) ⊃ C TF T T T T T F F Since A is true, the only way A ⊃ (P • R) can be true is for (P • R) to be true, so put a T under the • of (P • R) (K • ∼C) ⊃ ∼(P • R)/ J ⊃ (K • P)/ A ⊃ (P • R) Conclusion: (A • J) ⊃ C TF T T T T T T F F The only way (P • R) can be true is for both P and R to be true, so put T's under all the P's and R's: (K • ∼C) ⊃ ∼(P • R)/ J ⊃ (K • P)/ A ⊃ (P • R) Conclusion: (A • J) ⊃ C TF T T T T T T T T T T T F F Since J is true, the only way J ⊃ (K • P) can be true is for (K • P) to be true, so put a T under the • of (K • P) (K • ∼C) ⊃ ∼(P • R)/ J ⊃ (K • P)/ A ⊃ (P • R) Conclusion: (A • J) ⊃ C TF T T T T T T T T T T T T F F The only way (K • P) can be true is for K to be true, so put T under all the K's (K • ∼C) ⊃ ∼(P • R)/ J ⊃ (K • P)/ A ⊃ (P • R) Conclusion: (A • J) ⊃ C T TF T T T T T T T T T T T T T F F Since P, R are both true put a T under the • of (P • R) (K • ∼C) ⊃ ∼(P • R)/ J ⊃ (K • P)/ A ⊃ (P • R) Conclusion: (A • J) ⊃ C T TF T T T T T T T T T T T T T T F F Since (P • R) is true, ~(P • R) id false, so put an F under the ~ (K • ∼C) ⊃ ∼(P • R)/ J ⊃ (K • P)/ A ⊃ (P • R) Conclusion: (A • J) ⊃ C T TF F T T T T T T T T T T T T T T F F (K • ∼C) is true becatuse K and ~C are true, so put a T under the • of (K • ∼C). (K • ∼C) ⊃ ∼(P • R)/ J ⊃ (K • P)/ A ⊃ (P • R) Conclusion: (A • J) ⊃ C T T TF F T T T T T T T T T T T T T T F F We have reached a contradiction because (K • ∼C) ⊃ ∼(P • R) is given as a premise yet (K • ∼C) is true and ∼(P • R) is false. Therefore since the assumption that the conclusion is false leads to a false premise, then the argument is valid. Edwin