I use the method of truth tables where you begin with T's and F's under only the letters, and end up with T's and F's under only the symbols. Put TTTTFFFF under B Put TTFFTTFF under M Put TFTFTFTF under K B ∨ M / B ∨ ∼ K // (K ∨ ∼ M) ⊃ B ---------------------------------- T T T T T T T T T T F F T T T F T T T F T T F T F F F T F T F T T T F F T F F F T F F F F T T F F F F F F F F F Do B ∨ M, which is T unless both sides false. B ∨ M / B ∨ ∼ K // (K ∨ ∼ M) ⊃ B ---------------------------------- T T T T T T T T T T T T F F T T T T F T T T F T T T F T F F F T F T T F T T T F F T T F F F T F F F F F T T F F F F F F F F F F Now erase the columns under the first B and M columns: B ∨ M / B ∨ ∼ K // (K ∨ ∼ M) ⊃ B ---------------------------------- T T T T T T T T F F T T T T T T F T T T F F F T T F T T T F T F F F T F F F T T F F F F F F F F Now just left of the first K column, do ~ K by putting the opposite of what's under K under ~. B ∨ M / B ∨ ∼ K // (K ∨ ∼ M) ⊃ B ---------------------------------- T T F T T T T T T T F F T T T T F T T F T T T T F F F T T F F T T T F T F T F F T F F F F T T F F F F T F F F F Erase the column under K B ∨ M / B ∨ ∼ K // (K ∨ ∼ M) ⊃ B ---------------------------------- T T F T T T T T T F T T T T F T F T T T T F F T T F F T T F T F T F T F F F F T F F F F T F F F Do B ∨ ∼ K, which is T unless both sides false. B ∨ M / B ∨ ∼ K // (K ∨ ∼ M) ⊃ B ---------------------------------- T T T F T T T T T T T F T T T T T F T F T T T T T F F T T F F F T T F T F T T F T F F F F F T F F F F T T F F F Erase the columns we just used to put a column under the ∨ B ∨ M / B ∨ ∼ K // (K ∨ ∼ M) ⊃ B ---------------------------------- T T T T T T T F T T T T T F T T T F F T T F T T F T T F T F F F T F F F T F F F Now just left of the second M column, do ~ M by putting the opposite of what's under M under ~. B ∨ M / B ∨ ∼ K // (K ∨ ∼ M) ⊃ B ---------------------------------- T T T F T T T T F F T T T T T T F T T T F T F T T F T F T F T T F F T F F F T T F F F T F T F F Erase the column under the second M B ∨ M / B ∨ ∼ K // (K ∨ ∼ M) ⊃ B ---------------------------------- T T T F T T T F F T T T T T T T T F T T T F T F F T T F F F F F T T F F T F T F Do K ∨ ~ M, which is T unless both sides false. Blace result under the ∨. B ∨ M / B ∨ ∼ K // (K ∨ ∼ M) ⊃ B ---------------------------------- T T T T F T T T F F F T T T T T T T T T F T T T T F T T F F T T F F F F F F T T T F F T F T T F Now erase the columns under the first K and ~ columns: B ∨ M / B ∨ ∼ K // (K ∨ ∼ M) ⊃ B ---------------------------------- T T T T T T F T T T T T T T T T T F T F T T F F F F T F F T T F Since I am not sure what / and // mean, I can go no further. I do know what ⊃ means but I can't go any further until I learn what / and // stand for. If you'll tell me what they stand for (conjunction?) (biconditional?) in the thank-you note below I'll be glad to finish. Edwin