∼(p → q), p ∧ ∼q | p | q | ~q | p → q | ∼(p → q) | p ∧ ∼q | ——————————————————————————————————————————— | T | T | F | T | F | F | | T | F | T | F | T | T | | F | T | F | T | F | F | | F | F | T | T | F | F | The last two columns are the same FTFF, so they are equivalent and we can now write: ∼(p → q) ⇔ p ∧ ∼q Edwin