Let the common center of the two circles be ODraw OD. Then OD⊥BD because radius OD drawn to the point of tangency is perpendicular to the tangent line BD. so ߡOBD is a right triangle with hypotenuse OB. cos(∠DOB) = = cos(∠AOD) = cos(180°-∠DOB) = -cos(∠DOB) = Use the law of cosines: ADČ = AOČ + ODČ - 2·AB·OD·cos(∠AOD) ADČ = 13Č + 8Č - 2·13·8· ADČ = 169 + 64 + 128 ADČ = 361 AD = √361 AD = 19. Edwin