We want the area of ΔDEF PB = 20 is the altitude, EB = 15, so PE = 20-15 = 5 ΔABC is a right triangle because AB²+BC² = 10²+24² = 100+576 = 676 = 26² = AC² ΔDEF ∽ ΔABC, so ΔDEF is also a right triangle. ΔPED ∽ ΔPBA ΔPEF ∽ ΔPBC PE/PB = DE/AB PE/PB = EF/BC 5/20 = DE/10 5/20 = EF/24 20∙DE = 5∙10 20∙EF = 5∙24 20∙DE = 50 20∙EF = 120 DE = 2.5 EF = 6 Area of ΔDEF = 0.5(DE)(EF) = 0.5(2.5)(6) = 7.5 <--Answer Edwin