SOLUTION: Let u and v be non-zero vectors in R^3 in standard position. Prove that if u and v are of length rcm each, where r is an element of R and r is less than 0, then their tips lie on t
Algebra.Com
Question 1122535: Let u and v be non-zero vectors in R^3 in standard position. Prove that if u and v are of length rcm each, where r is an element of R and r is less than 0, then their tips lie on the surface of a sphere of radius rcm.
Answer by ikleyn(52778) (Show Source): You can put this solution on YOUR website!
.
Let u and v be non-zero vectors in R^3 in standard position. Prove that if u and v are of length rcm each,
where r is an element of R and r is less than 0, then their tips lie on the surface of a sphere of radius rcm.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For your info :
The length "r" of vectors CAN NOT be less than 0.
RELATED QUESTIONS
Let u and v be non-zero vectors in R^3 in standard position. Prove that if u and v are of (answered by greenestamps)
hello pleases can you help me with this question. Let u and v be non-zero vectors in R3... (answered by ikleyn)
1)u×u>=0 and u×u=0 if and only if u=0 prove theorem?
2)Show that there are no vectors u... (answered by lynnlo)
Please help me ㅠㅠ help me
1)u×u>=0 and u×u=0 if and only if u=0 prove... (answered by lynnlo)
1)u×u>=0 and u×u=0 if and only if u=0 prove theorem?
2)Show that there are no vectors u... (answered by lynnlo)
Let u, v ∈ R^n be vectors in R^n
(a) State and prove the Cauchy - Schwarz... (answered by ikleyn)
Q−4: [6+4 marks] Let S={v_1,v_2,v_3} be a linearly independent set of vectors in〖... (answered by CPhill)
Q−4: [6+4 marks] Let S={v_1,v_2,v_3} be a linearly independent set of vectors in〖... (answered by CPhill)
Q−4: [6+4 marks] Let S={v_1,v_2,v_3} be a linearly independent set of vectors in〖... (answered by CPhill)