SOLUTION: Is the following statement always, sometimes or never true? Justify your reasoning
there should be arrows above the letters
|u + v| > |u - v|
thanks
Algebra.Com
Question 1044123: Is the following statement always, sometimes or never true? Justify your reasoning
there should be arrows above the letters
|u + v| > |u - v|
thanks
Answer by jim_thompson5910(35256) (Show Source): You can put this solution on YOUR website!
Let's set up some notation
a,b,c,d are scalars
u and v are vectors such that
u = (a,b)
v = (c,d)
So that means
u+v = (a+c,b+d)
u-v = (a-c,b-d)
Now use the length of vector formula to get
|u + v| = sqrt( (a+c)^2 + (b+d)^2 )
|u + v| = sqrt( a^2+2ac+c^2 + b^2+2bd+d^2 )
and this as well
|u - v| = sqrt( (a-c)^2 + (b-d)^2 )
|u - v| = sqrt( a^2-2ac+c^2 + b^2-2bd+d^2 )
Now let's go back to
|u + v| > |u - v|
Perform substitutions and then square both sides to get
|u + v| > |u - v|
sqrt( a^2+2ac+c^2 + b^2+2bd+d^2 ) > sqrt( a^2-2ac+c^2 + b^2-2bd+d^2 )
a^2+2ac+c^2 + b^2+2bd+d^2 > a^2-2ac+c^2 + b^2-2bd+d^2
Things look messy, but we can subtract a^2, c^2, b^2 and d^2 from both sides to have those terms cancel out. We will be left with this
2ac + 2bd > -2ac - 2bd
add 2ac and 2bd to both sides and you'll get
2ac+2bd+2ac+2bd > 0
4ac+4bd > 0
which ultimately simplifies to ac+bd > 0
-------------------------------------------------------
So if |u+v| > |u-v|, where u and v are defined above, then ac+bd > 0. The same can be said in reverse as well.
There are some cases where ac+bd > 0 is true. But it could be false as well.
For instance, if a = 2, b = 3, c = 1 and d = 2, then the inequality would be true.
Compare this to if a = 2, b = 3, c = -1 and d = -2, then the inequality would be false.
Side note: the inequality is only true if the angle between the vectors u and v is acute. If the angle is obtuse, then the inequality is false.
So the final answer is sometimes
RELATED QUESTIONS
Tell whether the statement below is sometimes, always, or never true. Justify your... (answered by greenestamps)
Tell weather the statement is sometimes true always true or never true... (answered by stanbon)
determine whether the equation y-y=y is sometimes always or never true justify your... (answered by Alan3354)
Please help me solve this equation:
Directions: tell whether the statement is always... (answered by jim_thompson5910)
Determine whether the following statement is always, sometimes, or never true. Explain.... (answered by Fombitz)
For each of the following, determine whether the statement is sometimes, always, or never (answered by Solver92311)
Tell wether the following statement is always,sometimes,or never true. For a given whole... (answered by Edwin McCravy)
IS the following statement always, sometimes or never true
If you double the lengths... (answered by Alan3354)
Determine whether
the following statement is
sometimes, always, or never
true for... (answered by math-vortex)